Tissue Distribution of 5-Hydroxymethylcytosine and Search for Active Demethylation Intermediates
نویسندگان
چکیده
5-Hydroxymethylcytosine (hmC) was recently detected as the sixth base in mammalian tissue at so far controversial levels. The function of the modified base is currently unknown, but it is certain that the base is generated from 5-methylcytosine (mC). This fuels the hypothesis that it represents an intermediate of an active demethylation process, which could involve further oxidation of the hydroxymethyl group to a formyl or carboxyl group followed by either deformylation or decarboxylation. Here, we use an ultra-sensitive and accurate isotope based LC-MS method to precisely determine the levels of hmC in various mouse tissues and we searched for 5-formylcytosine (fC), 5-carboxylcytosine (caC), and 5-hydroxymethyluracil (hmU) as putative active demethylation intermediates. Our data suggest that an active oxidative mC demethylation pathway is unlikely to occur. Additionally, we show using HPLC-MS analysis and immunohistochemistry that hmC is present in all tissues and cell types with highest concentrations in neuronal cells of the CNS.
منابع مشابه
Analysis of TET Expression/Activity and 5mC Oxidation during Normal and Malignant Germ Cell Development
During mammalian development the fertilized zygote and primordial germ cells lose their DNA methylation within one cell cycle leading to the concept of active DNA demethylation. Recent studies identified the TET hydroxylases as key enzymes responsible for active DNA demethylation, catalyzing the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. Further oxidation and activation of the ba...
متن کامل5-Methylcytosine and 5-Hydroxymethylcytosine Spatiotemporal Profiles in the Mouse Zygote
BACKGROUND In the mouse zygote, DNA methylation patterns are heavily modified, and differ between the maternal and paternal pronucleus. Demethylation of the paternal genome has been described as an active and replication-independent process, although the mechanisms responsible for it remain elusive. Recently, 5-hydroxymethylcytosine has been suggested as an intermediate in this demethylation. ...
متن کاملTissue-Specific Differences in DNA Modifications (5-Hydroxymethylcytosine, 5-Formylcytosine, 5-Carboxylcytosine and 5-Hydroxymethyluracil) and Their Interrelationships
BACKGROUND Replication-independent active/enzymatic demethylation may be an important process in the functioning of somatic cells. The most plausible mechanisms of active 5-methylcytosine demethylation, leading to activation of previously silenced genes, involve ten-eleven translocation (TET) proteins that participate in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine which can be furt...
متن کاملMutagenic and Cytotoxic Properties of Oxidation Products of 5-Methylcytosine Revealed by Next-Generation Sequencing
5-methylcytosine (5-mC) can be sequentially oxidized to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and finally to 5-carboxylcytosine (5-caC), which is thought to function in active DNA cytosine demethylation in mammals. Although the roles of 5-mC in epigenetic regulation of gene expression are well established, the effects of 5-hmC, 5-foC and 5-caC on DNA replication remain uncl...
متن کامل5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
5-Hydroxymethylcytosine (5-hmC) is an intermediate in active demethylation in metazoans, as well as a potentially stable epigenetic mark. Previous reports investigating 5-hydroxymethylcytosine in plants have reached conflicting conclusions. We systematically investigated whether 5-hmC is present in plant DNA using a range of methods. Using the model organism Arabidopsis thaliana, in addition to...
متن کامل